Notes for MSX Software Developers [2nd edition]

25th June, 1985
2nd July, 1985
lst November, 1985

(All information contained herein is proprietary to ASCII MSFE)

Scanned and converted to PDF by HansO, 2003

Notes for MSX Software Developers { 2nd edition] Page 2

This document provides important information for anyone writing software
for MSX/MSX2 to keep the compatibility between machines and versions.
Some frequently asked questions and other useful information are
also provided.

1.0 DETERMINING THE MSX VERSION

There are several ways to know the MSX version on which the
software is running. Following is the recommended way to check
the version number.

1. Main-ROM address 2DH contains the version information as follows:

Not defined (reserved)

CONTENTS OF 2DH | VERSION OF MSX
——————————————————— + — - ———
0 | MSX-1
1 | MSX-2
|

For software that runs in an environment where the page 0

of main-ROM is switched out with other ROM or RAM, such as
software under MSX-DOS, use the inter-slot read function to address
2DH with slot address stored in RAM location FCClH (See next note).

NOTE

In MSX2, the MAIN-ROM is not always
located in the slot 0 or the slot 0-0.
(0-0 means the secondary slot 0 of the
primary slot 0.) The address FCClH
contains the slot address of the MAIN-ROM
and the address FAF8H contains the slot
address of SUB-ROM. (See 3.0 The slot
address of BASIC-ROM.)

This is because of the MSX-2 adaptor for
the MSX-1.

2. RAM address FAF8H contains the slot address of MSX2 SUB-ROM. Since
this doesn't exist in MSXl, application software is able to know
whether this is MSX1 or not by the contents of this RAM location.

I.e.,

Notes for MSX Software Developers [2nd edition) Page 3

MSX-1
MSX-2 or newer

As you see, this method provides only the information just the
version is MSX1l or not. The MAIN-ROM address 2CH-2DH contains more
informations.

2.0 THE I/0 ADDRESS OF VDP

In the MSX-2, the VDP is not always sitting in the address 98H-9BH.
Therefore software that accesses the VDP directly must refer
to the MAIN-ROM address 6 and 7 to know the addresses of the VDP as
follows. This is because of the MSX-2 adaptor for the MSX-1l.

VDP PORT I/0 address

I

| (0006) in MAIN-ROM
VRAM write | (0007) in MAIN-ROM

l

|

|

|

Status read (0006) + 1
Command write (0007) + 1
Palette write (0007) + 2

Indirect register ‘access (0007) + 3

3.0 THE SLOT ADDRESS OF THE BASIC-ROM

In the MSX-2, the MAIN-ROM 1is not always placed in slot 0 or
slot 0-0. Also, there is another ROM, called SUB-ROM, which contains
the software that supports new features and 1is placed in page 0 of
some slot. The following RAM area contains the slot address of these
ROMs.

To access the BIOS entries in these ROMs, use an inter-slot call if
necessary.

Address | Label | contents

_________ b ¢ —_———
FCC1H | EXPTBL | The slot address of the MAIN-ROM
FAF8H I EXBRSA | The slot address of the SUB-ROM

4.0 EXPANDED SLOT

In the MSX2, there 1is a great possibility that any one of the slots
has been expanded to have more slots containing more softwares on ROM
such as SUB-ROM, DISK-ROM, RS232-ROM and special built in software ROM.
So there should be never a software for the MSX2 that does not work
with the machine that has expanded slot.

So, please check before release your software to make it sure that
your software works in the expanded slot, and with the machine with

Notes for MSX Software Developers [2nd edition] Page 4

the RAM placed in the expanded slot.

Especially, do not access the address FFFFH as the normal RAM. This
is the address of the expanded slot select register. There are several
softwares that place the stack pointer in this address space with
the instruction,

LD SpP,0000

that, of course, does not work with the machines with expanded slots.

5.0 CALLING THE BIOS

Please call the BIOS through the entry jump tables. Software that calls
the BIOS directly will not work on all machines! See examples prgrams.

6.0 THE INITIAL STATE OF THE RAM

The contents of main RAM and VRAM is undetermined unless otherwise
stated. There are some softwares that assumes the initial contents of
RAM is zero (we don't know the reason) and, of course, it does not
work in with all machines.

7.0 THE INITIAL VALUE OF THE STACK POINTER

MSX machines with built in disk drive are increasing. However, depending
on the position of the slot where the disk ROM is placed, the disk
ROM takes system control and initializes its work space earlier than
the application software in the cartridge slot. In this case, the
stack pointer points to a former address rather than that of the system
without disk ROM. Because of this fact, there is software that does not
work on the system with built in disk drive. Although this trouble

can be avoided by starting the system with shift key pressed to disable
disk system, it is recommended that, you initilize the stack pointer

at the begining of your software.

8.0 HOW TO RETURN TO THE BASIC

To return to the BASIC interpreter from the application software,
do the following steps. Major work area of the BASIC should be kept
unchanged. (If you don't know which 1is the major and which is the
minor, don't touch any of the BASIC work area.)

The contents of all the registers and stack are ignored.

" 1. Enable the MAIN-ROM slot. The slot address of the MAIN-ROM is
stored in the RAM location FCClH. (See 3.0 The slot address of

Notes for MSX Software Developers [2nd edition] Page 5

the BASIC-ROM.)
2. Jump to the location 409BH in the MAIN-ROM.

The prompt "Ok" (or in MSX-2, user defined prompt string) will be
displayed.

9.0 ESCAPE SEQUENCES OF MSX

MSX supports the escape sequences listed on the table in appendix
B. These functions are available for the PRINT statement of BASIC,
CHPUT BIOS routine, CONOUT of MSX-DOS direct BIOS call and CONSOL
OUTPUT of MSX-DOS function call.

These are subset of the DEC VT-52 terminal or HEATH H-19 terminal.

10.0 WORK SPACE OF THE DISK SYSTEM

The size of the work space of the disk system varies depending on
the number and capacity of the drives. The top address of the free
area for the application softwares under DISK-BASIC environment is
(HIMEM)-1. (HIMEM) is a value stored in the address FC4AH(HIGH) and
FC4BH(LOW) .

So far, the disk system that requires the largest work space is the
system with two 2DD drives. And the lowest address of the work area
in this case is around DE70H.

S0, with some allowance, let's make the top address of user area
to DE3FH.

However, there is still a possibility that there may be a system
with larger system work space. So, every application softwares must
check the address stored in the HIMEM (FC4AH, FC4BH) and make sure
that even in the worst case, the system does not crash, The
recommended ways when the system uses more work area than the
application software expects are:

1. Make the work area relocatable so that it can be 1located
anywhere.

2. Allocate the work area from BOTTOM. This may be a good way
because all the MSX2 machine has RAM from address 8000H.

3. Direct the user to reboot the system with fewer disk drives.
(Refer to the next section.)

4. Halt the program after displaying the message, "Insufficient
work space."

11.0 HOW TO REDUCE THE DISK DRIVES

Pressing the 'shift' key until beep sounds after the system reset
(or power on) makes all the disk drives disabled. Useful when the
application software does not work with the disk connected. Similarly,
the 'control' key disables the two drive simulator of single drive

Notes for MSX Software Developers [2nd edition] Page 6

system and the work area of the disk system become smaller.

12.0 HOW TO KNOW IF THE DISK SYSTEM IS CONNECTED OR NOT

Check the contents of the RAM whose address is FFA7H. If ‘'C9H' is
stored, no disk is connected, otherwise disk system is connected and
initialized.

aAfter the disk system 1is initialized, following address contains
some informations available for the applications. If the system has
less disk interfaces than four, the rest of table entries are filled
with zero.

Note that the contents of this table is not initialized if no disk
interface exits, so make sure there is a disk interface 1is connected
as described before.

address contents

FB21H Number of drives connected to the first interface
FB22H The slot address of the first interface

FB23H Number of drives connected to the second interface
FB24H The slot address of the second interface

FB25H Number of driv%s connected to the 3rd interface
FB26H The slot address of the 3rd interface

FB27H Number of drives connected to the 4th interface
FB28H The slot address of the 4th interface

13.0 AUTOMATIC EXECUTION OF APPLICATION SOFTWARE

For the simple application softwares 1like games, put start address
of the software in the 'INIT' location in the ROM 1ID area. However,
in this way, no other system softwares such as disk/RS-232C may not
be initialized.

For those applications that need to have all other system softwares
initialized, put inter—-slot «call instruction to the start address

at address FEDAH. This is a hook that is called after all the system
software is initialized. This method is available on the system
without disk. Please refer to 'MSX-DOS BOOT PROCEDURE' in the 'MsX

Technical Data Book'.

14.0 DISK ERROR HANDLING BY APPLICATION SOFTWARE

An application software may handle the disk errors. The two byte
value stored in RAM whose address starting from F323H 1is a pointer
to the pointer of the disk error handler. Change those 2 bytes so
that it points the pointer to the error handler in the application
software.

Notes for MSX Software Developers [2nd edition] Page 7

The kind of error is passed through register 'C' and the driver number
is passed through register 'a’'. The LSB of register 'C' is zero if
the error occurred during the read operation and 1 if the error

occurred
during the write operation. Bit 1 through 3 of the register 'C'
represent the error status as follows:

b3 b2 bl | Kind of error

JE

0 0 0 | Write protected

0 0 1 | Not ready

0 1 0 | CRC error

0 1 1 | Seek error

1 0 0 | Record not found

1 0 1 | Write error

1 1 0 | Other error

The returned value from the error handling routine determine the action
taken by the DOS as follows. The contents of register 'C' and 'SP' must
be kept unchanged. Other registers may be destroyed.

C | Action after the error
———— b _—

2 | Abort

1| Retry

0 | Ignoré

15.0 DOS FUNCTION CALL

The MSX-DOS function call 1is available wunder the Disk Basic
environment. The RAM address F37DH is the entry for DOS function
call which 1is equivalent to the address 5 in the MSX-DOS

environment.

Refer to the 'MSX-DOS SYSTEM CALL' section in the 'MSX Technical
Data Book'

Note that data transfer function, i.e. disk read/write to/from page
1 of memory is not supported.

Notes for MSX Software Developers [2nd edition] Page 8

SOME IMPORTANT LOCATIONS IN MSX2

Address contents

0006H The I/0 address of VDP read port
0007H The I/0 address of VDP write port
002DH The version number of MSX

409BH BASIC interpreter warm start entry

F323H Entry to disk error handling routine

FAF8H Slot address of SUB-ROM

FB21H Informations of disk drivers

FC4AH The beginning address of the system work area

FCC1lH Slot address of MAIN-ROM

FFATH Disk is connected if the contents of this address is not 'C9'

FEDAH Hook for auto start
FFFFH Slot select register for the secondary slot

Notes for MSX Software Developers

[2nd editi

on] Page 9

ESCAPE SEQUENCES SUPPORTED BY MSX

MSX supports following escape sequences which is a subset of H19
upward compatible terminal of VT52).

B.1

CURSOR FUNCTIONS

<ESC>A
<ESC>B
<ESC>C
<ESC>D
<ESC>H
<ESC>Y<row+20H><column+20H>

B.2 ERASING AND EDITING

B.3

<ESC>j
<ESC>E
<ESC>K
<ESC>J
<ESC>1
<ESC>L
<ESC>M

CONFIGURATION

<ESC>x4
<ESC>x5
<ESC>y4
<ESC>y5

;Cursor
;Cursor
;Cursor
;Cursor
;Cursor
;Locate

;Clear
;Clear
;Erase
;Erase
;Erase
;Insert
;Delete

:1Set bl
;Set cu
;Set un
;Set cu

up
down
right
left
home
cursor

screen
screen

to end-of-line
to end-of-screen
entire line

a line

a line

ock cursor

rsor off
derscore cursor
rsor on

(an

Notes for MSX Software Developers [2nd edition] Page 10

HOW TO USE ZSID ON MSX-DOS

The patch information for 2SID to use under MSX-DOS

Followings are addresses and data of the patches to the ZSID.COM version
1.4 which is loaded from 100H.

Address | Original Patch
_________ T,
1100 | 38 28
1106 | 39 29
13B1 | FF EF
13FE | FF EF
1F8D | FF EF

Original version of ZSID uses "RST 38H" instruction for break pointing,
however MSX-DOS uses "RST 38H" for hardware interrupt. Above patches
make ZSID to use "RST 28H" instead "RST 38H".

Notes for MSX Software Developers [Sample Programs] Page 11

SAMPLE MACHINE CODE PROGRAMS

PROGRAM 1 : ENABLE SLOT FOR APPLICATION PROGRAMS

Suppose your program cartridge is 32K bytes

H long (4000H..0BFFFH). You set the ID at 4000H
; and 4001lH and the execution start address within
: page 1 (4000H..7FFFH). MSX passes control
; to this address so the part which resides in
; page 1 is not yet enabled at this point. You

have to know where you are (in what primary
; slot, in what secondary slot) and enable the
H part at page 1. Below 1is the sample program
; to do this.

7

.280
ENASLT EQU 0024H ;enable slot
RSLREG EQU 0138H ;read primary slot select
;register
EXPTBL EQU OFCC1H i;slot is expanded or not
ENAP2:
CALL RSLREG ;Read primary slot #
RRCA ;Move it to bit 0,1 of [Acc])
RRCA 1
AND 00000011B
LD C,A
LD B,0
LD HL, EXPTBL ;See if this slot 1is expanded
;0r not
ADD HL,BC
LD C,A ;Save primary slot #
LD A, (HL) ;Get the slot is expanded or not
AND 80H
OR Cc ;Set MSB if so
LD Cc,A ;Save it to [C]
INC HL ;Point to SLTTBL entry
INC HL
INC HL
INC HL
LD A, (HL) ;iGet what 1is currently output
;to expansion slot register
AND 00001100B
OR o] ;Finaly form slot address
LD H,80H
Jp ENASLT ;enable page 2

END

Notes for MSX Software Developers [Sample Programs] Page 12

PROGRAM 2 : SAMPLE PROGRAM TO USE HOOK

; Start-up initialize entry
i This procedure will be called when system initializing.

.280
H.KEYI EQU . OFDYAH ; interrupt hook
EXPTBL EQU OFCClH ; slots expanded or not
PSLTRG EQU 0A8H ; I/0 port address of primary slot
register
EXT MYINT ; my interrrupt handler
CSEG

INIT:
; Please insert other initialize routine here, if you need.

; Set interrupt entry
DI ; start of critical region

; Get old interrupt entry inter-slot call hook

LD DE,OLDINT ; set address of old interrupt hook saved
area

LD HL,H.KEYI ¢ set address of interrupt entry hook

LD BC,S ; length of hook is 5 bytes

LDIR ; transfer

; What slot address is this cartridge placed
CALL GTMSLT ; get my slot address

; Set new inter-slot call of interrupt entry

LD (H.KEYI+l),A ; set slot address

LD A,0F7H ; 'RST 30H' inter-slot call operation code
LD (H.KEYI),A ; set new hook op-code

LD HL, INTENT ; get our interrupt entry point

LD (H.RKEYI+2),HL ; set new interrupt entry point

LD A,0C9H ; 'RET' operation code

LD (H.KEYI+4),A ; set operation code of ‘RET'

EI : end of critical region

RET

Notes for MSX Software Developers [Sample Programs])

i What slot address is this cartridge placed
i Entry: No

; Action:
;7 Return:
i Modify:

GTMSLT:
PUSH
PUSH
IN
RRCA
RRCA
AND
LD
LD
LD
ADD
OR
LD
INC
INC
INC
INC
LD

expansion

Compute my slot address
A = slot address

Flag
BC ; save environment
HL
2, (PSLTRG) ; read primary slot register
; move it to bit 0,1 of A
00000011B ; get bit 1,0
C,A ; set primary slot No.
B,0
HL,EXPTBL ; see is this slot is expand
HL,BC
(HL) ; set MSB if so
c,a
HL ; point to SLTTBL entry
HL
HL
HL
A, (HL) .Y ; get what 1is currently
; slot register
00001100B ; get bit 3,2
o ; finely form slot address
HL ; restore environment
BC

return to main

~

INTENT:
CALL MYINT ; call interrupt handler
JP OLDINT ; go old interrupt handler
; HOOK save area
DSEG
OLDINT: DS 5

END

Page 13

ed or not

output to

Notes for MSX Software Developers [Sample Programs] Page 14

PROGRAM 3 :

RS232 TEST

;**************t***************it****tii******

ek kX
’
ek kk
’

e kkk
’

* k%

Beginning of machine-dependent code ***

* k%

;t*********************************i**********

SYSINI,RS2INZ,RS2IN,RS20UT, TERMIN

.Z80
ENTRY
.COMMENT %
LD DE, NEXT
JP SYSINI
NEXT: CALL RS2INZ
CALL RS2IN
CALL RS20UT
- <
Jp TERMIN
%
ABORT EQU 0
CALSLT EQU 01CH
ESC EQU 01BH
EXTBIO EQU OFFCAH
FINIT EQU 3
FOPEN EQU 6
FCLOSE EQU 18
FGETCH EQU 12
FPUTCH EQU 15
FLOC EQU 24
MAXBUF EQU 254
RAWMOD EQU 4
SLTREG EQU 0A8H
BUFSIZ EQU MAXBUF*2+10+40
; ENTRY:
H DE -> RETURN ADDRESS

;get rs232
;initialize rs232

;read from rs232

;write to rs232

sterminate

;abort system
;inter slot call

;extended bios call

;initialize rs-device

;open rs—device

;close rs-device

;get one character from rs-device
;put one character to rs-device
;get receive buffer condition
;input buffer length

;open mode < raw mode >

;slot register number

Notes for MSX

SYSINI: LD
LD
SBC
LD
XOR
SBC
JP
LD
LD
SBC
LD
LD
PUSH
INC
LD
LD
ADD
LD
RET

.
’

GETSLT: IN
INC

RS2I20: DEC
RET
SRL
SRL
JR

’

FUNCAL: PUSH
PUSH
LD
PUSH
POP
LD
ADD
POP
POP
CALL
EI
RET

~e

Software Developers

HL, (6)
BC,BUFSIZ+512
HL,BC
BC,08000H
A
HL,BC
C,ERROR3
HL, (6)
BC,BUFSIZ
HL,BC
SP,HL
(HLSAV) ,HL
DE
HL
(DEVTBL) ,HL
DE, 40
HL,DE
(RSFCB),HL

A, (SLTREG)
B
B
2
A
A
RS2120

AF

DE

A, (FUNSLT)
AF

1Y

DE, (DEVTBL)
IX,DE

DE

AF

CALSLT

[Sample Programs] Page 15

;get top of MSX DOS

;check stack area

;must be stayed higher address than 08000H
;if error abort

;get top of MSX DOS

;set stack pointer

;set return address

;save device table address

;get fcb address for rs232c

;save it

;get current slot table
;adjust high address
;count down

;shift slot data

;get slot number

;get open address

Notes for MSX Software Developers

RS2INZ: LD
LD
RLCA
RLCA
AND
LD
CALL
AND
LD
LD
LD
LD
PUSH
CALL
POP
XOR
SBC
JR
LD
LD
INC
LD
INC
LD
LD
LD
LD
CALL
CALL
LD
LD
CALL
EI
RET

’

ERROR3: LD
JR

’

ERROR2: LD
JR

ERROR1: LD

ERRJOB: LD
CALL
Jp

~e

HL, (DEVTBL)

A,H

3

B,A

GETSLT

3

B,A

HL, (DEVTBL)
D,8

E,0

HL

EXTBIO

DE

A

HL,DE

Z ,ERROR1
HL, (DEVTBL)
A, (HL)

HL

E, (HL)

HL

H, (HL)

L,E
(DEVTBL) ,HL
(FUNSLT) ,A
RSINIT
RSOPEN
1Y,0
IX,0CFH
CALSLT

DE, ERRMG3
ERRJOB

DE, ERRMG2
ERRJOB

DE, ERRMSG
c,9

5

ABORT

A}

[Sample Programs] Page 16

;select RC232C DEVICE

;save work address

;branch if do not exist RS-cord

;get rs232c driver slot

;display function keys

;display error message

;go MSX DOS

Notes for MSX

ERRMSG: DB
ERRMG2: DB
ERRMG3: DB

.
’

RSOPEN: LD
LD
LD
LD
CALL
JR
RET

RSINIT: LD
LD
RLCA
RLCA
AND
LD
CALL
AND
LD
LD
LD
CALL
Jp
RET

.
’

RS2IN: PUSH
PUSH
PUSH
PUSH
PUSH
LD
CALL
LD
OR
SCF
JR
LD
CALL
JR
LD

RS2INO: LD
AND
JR

~e

Software Developers

'RS-DEVICE DO NOT EXIST',ODH,0AH,'S'
'RS-DEVICE CAN NOT OPEN',O0DH,02H, 'S’
‘DO NOT RESERVE STACK AREA',0DH,0AH,'S'

IX,FOPEN
HL, (RSFCB)
C,MAXBUF
E,RAWMOD
FUNCAL
C,ERROR2

HL, PRMETR
A,H

3

B,A
GETSLT

3

B,A
IX,FINIT
HL, PRMETR
FUNCAL
C,ERROR2

BC
DE
HL
IX
Iy
IX,FLOC
FUNCAL
A,H
L

Z ,RSRETN
IX,FGETCH
FUNCAL
NC,RS2INO
A,3FH
HL,MASK
(HL)
RSRETN

;set fcb address
;set maximum buffer length
;set open mode

[Sample Programs])

Page 17

;get slot of parameter address

;get high address

;get target slot number

;parameter address

;check error

;set '?' if error

Notes for MSX Software Developers

RS20UT: PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
LD
CALL
ALLRET: POP
RSRETN: POP
POP
POP
POP
POP
RET
TERMIN: LD
CALL
Jp
PRMETR: DEFB
DEFW
DEFW
DEFB
PRMTR2: DEFB
DEFW
DEFW
DEFB
FUNSLT: DEFB
DEVTBL: DEFW
RSFCB: DEFW
HLSAV: DEFW
MASK: DEFB

END

BC
DE
HL
IX
IY
AF
IX,FPUTCH
FUNCAL
AF
Iy
IX
HL
DE
BC

IX,FCLOSE
FUNCAL
ABORT

' 8N1XNNNN'
9600
9600
0

' SN1INNNNN'
9600
9600

Mo oo+

{Sample Programs]

;exit to MSX DOS

Page 18

Notes for MSX Software Developers

PROGRAM

4 : WHERE AM I

To know where you are;

This routine

returns

the

following format in [Acc].

FxxxSSPP

| | |++-- primary slot # (0-3)

| ++---- secondary slot # (0-3)
1 if secondary slot # specified

This value can later be used as an input parameter

[Sample Programs]

'RST

zZero

is

currently output

Page 19

slot address of the

30!

if the program

expanded or not

to

H for the RDSLT, WRSLT, CALSLT, ENASLT and

.280

CSEG

RSLREG EQU 138H

EXPTBL EQU 0FCC1H

B800O EQU 0 ;set this to non

;resides at 8000..0BFFFH

WHERE_AM I:

CALL RSLREG ;jread primary slot #

RRCA ;move it to bit 0,1 of [Acc]

RRCA

IF B8000

RRCA

RRCA .

ENDIF

AND 11B

LD C,A

LD B,0

LD HL,EXPTBL ;see if this slot

ADD HL,BC

LD C,A

LD A, (HL)

AND 80H

OR (HL) ;set MSB if so

LD C,A ;save primary slot number

INC HL ;point to SLTTBL entry

INC HL

INC HL

INC HL

LD A, (HL) ;get what is

;expansion slot register

IF B800O

RRCA ;move it to bit 2,3 of [Acc])

RRCA

ENDIF

AND 1100B

OR c ;finally form slot address

RET

END

Notes for MSX Software Developers [Sample Programs] Page 20

PROGRAM 5 : WORK AREA FOR CARTRIDGE SOFTWARE

; How to allocate work area for cartridges

If the work area 1is greater than 2 bytes, make the SLTWRK
point to the system variable BOTTOM (OFC48H), then update
it by the amount of memory required. BOTTOM is set up by
the initialization code to point to the bottom of equipped
RAM.

Ex. if the program is at 4000H..7FFFH.

.280

CSEG

EXT SIZE ;Size of memory required

EXT NOROOM ;Called if out of memory

RSLREG EQU 138H

EXPTBL EQU OFCC1lH

BOTTOM EQU OFC48H

SLTWRK EQU 0FDO9H

CALL RSLREG ;Read primary slot #

RRCA ;Move it to bit 0,1

RRCA ;of [Acc])

AND 00000011B

LD c,A

LD B,0

LD HL, EXPTBL ' ;See if this slot is

ADD HL,BC ;expanded or not

ADD A,A

ADD A,A

ADD A,A

ADD A,A

LD C,A

LD A, (HL)

ADD A,A

SBC A,A ;Form mask pattern

AND 00001100B

INC HL ;Point to SLTTBL entry

INC HL

INC HL

INC HL

AND (HL) ;Get what 1is currently
;output to expansion
;slot register

OR c

OR 00000001B

PAGE

Notes for MSX Software Developers [Sample Programs] Page 21
; Now, we have the sequence number for this

; cartridge as follows.

H 00PPSSBB

; LT

: ||} |++-- higher 2 bits of memory address

; | |++---- secondary slot # (0..3)
: et —— primary slot # (0..3)
ADD AA ;Double since word table
LD c,A
LD B,0
LD HL, SLTWRK ;Point to entry in
ADD HL,BC ;SLTWRK table
LD BC, (BOTTOM) ;Get current RAM bottom
LD (HL),C ;Register this
INC HL
LD (HL),B
LD HL,SIZE
ADD HL,BC
LD A,H : ;Beyond OEFFFH?
CP OFOH
JP NC, NOROOM ;Yes, cannot allocate this much
LD (BOTTOM) ,HL
RET
; BOTTOM became greater than OEFFFH, there is
; no RAM left to be éllocated.
:NOROOM: ;Print messages or something

END

