CHAMP

Assembler/ Monitor package
for the
MSX range of computers

(c} P.S.S. 1984

452, Sioney Stantoy Road,
Covenlry,

Cvb 5DG.
Telephone: {0203) €£.67556

Scanned by JP Grobler, converted to PDF by HansO, 2001

CHATP

Assemblec/fonitor package for the
MSX range of computers.,

To Load i

(1) Husel your compater

12) Type BLOAD ° PSS "' H

4 L asure the tape is lully rewound
(4) Press play on your tape player
(5) Pross "HETURNS

{6) The program will automatically execute
Dhice 10aded.

The Package

Chamnmp wall auto-run when loading is
conpriele, 30, having isssued the LOAD
cimnmand . you need o nothing until the
sciveft Clears and Uisplays the copyright
Messede S10P the ok, femove i1, and re-
Place: it with a bilank Jala tape it you intend
1o save prugfai hiles lram Chaimnp.

{Assemble) mode

is used alter you hove typed in an AssembDily
latwjusije prOyram, in ofder 10 assemble it
L thelliine COJ,

<lInsert) mode

1 whal YOu use 10 type in an Assernbly
larwjiis e pprungfali,

{Edit) mode

vnabilizs you to modify an existing Assembly
lanyuaj proyram,

{Debug) mode

alluws the inspection or moditication of the

contents of the memory, or the execution

ol a machine code program,

Boin € ASSEMBLEY® and € DEBUG)

moxles are command modes. In these modes
varnous heys represent commands which
Mmake something happen 10 your program
or to memory. ,On the other hand,
CINSERTD and CEDIT) are text modes:
veslh these you Calh move program text
around on the screen, and add to, or modify
14

You can change from one mode 10 another
as shuwn here.

(i:lu:r);—_men —>nsenrt)

LESC)

vl

(kS'SE Mtx.e)
(%‘i (Al
<o uuc')l .

You now have CHAMP successiplly (oaded
o your computer, you will see (he ASSE
MBLE) prompt, Ar this point, the
computer is waiting for you to type in an
assembly language program, but don't do
anything yet.
see figure |,

© CHAMP EXAMPLE PAOGRAM

onG ey
: VARIABLES
t DB O
J DB 0O
PROGRAM
. 10FORI=100TO 1 STEP-1
LD A, §34
NEXT! Lo W, A
. 20FORJ=255TO 1 STEP~1
LD A, §FF
NEXTJ LD (3, A
. 30NEXT.J
LD A, (2
DEC A
JR NZ,NEXTJ
ADNEXT |
LD A, (1)
DEC A
JR NZ,NEXTI
: 80 RETURN: REM TO BASIC OR
CHAMP
RET
Figure 1

The first thing to notice is that there are a
fot of semi colons (;) abo.*. These may
look strange, but are very sisaply the equiv-
alent of the BASIC REM. In machine code
programming they are kncwn as COM-
MENTS, and they are extremely important
if you want 10 understand ‘omething you
may have written weeks ago. You can put
anything you like inside a communt, which
must beyin on a néw line, . have put the
equivalent BASIC program lines in com-
ments sO that you can see how the machine
code instructions can be made to operate in
the same way as BASIC,

Any line which does not start with a ; is an
assembly aje statement. The first one
is ORG $C/¥J. This is not a machine code
instruction but is short for QRIGIN, it tells
the assembler where to put your program
when you tell it 10 turn your 2ssembly lang-
uage into machine code. In BASIC, you
did’t need 10 worry about where your pro-
gram was because the interpreter looked
after all that for you, Now, you have the
whole of the computer under your control,
and that includes where yoy want your
program 1o go.

You also tell the assembler where 10 put
your variables. Once again, BASIC used 1o
do ail this for you, but BASIC isn't a5 good
at using the full power of the computer as a
hurnan being is, 0 you have to do it yout-
seit. For large machine code programs it is
usually a good idea to put all your variables
(Pgumur in one black, but for small pra-
(rarns it's okay 16 put themn next 1o the pro-
gram tor clarilty., The next lew assembiy
language staiements in our example tell the
assernbler that you want to use two variables,
1 and ! and that they will be found right at
the beyinning of the prograrm straight after
the OFUGIN address. .Because we are not
going to use numbers larger than 255, we
only need one byte for each of the two
variables, so the 08 (Defing Byte) statament
is used. 1f we had wanted to use larger num-
bers wa could have used the DW (Define
Waord) command to reserve 2 bytes for each
variabic. BASIC woukl have automatically
used up 5 bytes for each of | and J. The
‘storage define cornmandsverysimply tell the
asseinbler not 10 use an area of memory
because you're going to stare somea variables
there, They also teil the assernbler how big
gach area is and winat the areas are going to
ba called. [in this case) and J).

The storage commands, the ORG command
and the COMMENT are all catled Pseudo-
ops lops short tor gperations) because the
assembler doesn’'t generate any maching
code from them, they are just there for your
conveniencea,

All the ather assembler (anguage statements
will be transiated by the asseinbler into exe-
cutable machine code instructions, That Is,
instruction codes which will cause the
micragrocessor ta do something for you.
Ainong these are Load a register, test a flag
and Jump 10 a new address. These make up
the rest of the example program listing,
their operation is covered in several good
text books on the subject. {See Bibli-
ography),

{f you'ra not too clear on any of the three
types of instruction, Pseudo-ops, Camment,
Org or Storage, then please reread this
section, it's not at all difficuit once you get
ihe hang of it, but do take it at your own
paca.

Now that wa have covered the different
typas of statement wunderstaod by the
assembler you can enter the exampia pro-
gram,

Hands Oni

The { ASSEMBLE D prompt is tefling
you that the assembiler is waiting for you to
do something. We wan't 1o enter our first
proyram so tett CHAMP you want to EDIT
by pressingf ESC } The prompt
changes to € EDIT > and shows a flash.
ing underscare at the cursor pasitian. The
tirst thing you always wanl 1o put in is a

comment 10 say what the program does, so
type a semi colon 1ogether with the titie of
the program and any ciher informa. ion you
think might be useful. Press Enter beface
you reach the right band side of 1ha screen,
the line you just typed will mave up ona
place and the cursor will be {lashing at the
beginning of the new line. The prompt wilt

now show INSERT> , this is because
your are now inserting new information into
the dassembler. I you make a mistahe

before pressing ENTER, then use the cursor
keys [which operate as normall to correct
yaur mistake, just lype over any mispelt
warcds. {f you pressed ENTER belore
noticing your error, don’t worry, you can
cotrect it in a minute,

As you can see, you can also usé blank
comment lines to space your program listing
cui 10 make it more readable,

When you have finished typing the top com-
ment, and the cursor is at the beginning of 3
new ling try typing ENTER once more, you
will find that you yo back to {EDITY
mode. In {EDL maode, you can use
the cursor keys 10 scroll the listing up and
down and maoave the cursar through any line
you may want 10 change. Coirect any mis-
takes you may have t(hut don't press
ENTER} and move the cursor back down 10
the bottom of the text. Now press ENTER
again and you should once more have the

© cursor on a blank fine with text above it and

nothing below. It not, use ENTE H 10 1oggle
between € EDITY) and € INSERT)
and use the cursor keys 10 get you ta Ccorrect
position at the bottoin of tho text.

Now type a space without a semi calon, the
cursar wil! skip 10 the second Frald
{or column}, Lucausy CHAMP knovrs that if
YyOu type a space, you don’'t want anything
in the first tield. Now type in ORG foliowed
by a space. Once ayain, when CHAMP gets
the space, it knows (o skip ta the next tield,
and you can now complete the ORG inst-
ruction by typing $CPPP foliowed by
ENTER. Al instructions excegt camments
are typed into the assernbler in this way;
when you've finished using a particular field
{or don’t want 10 use it at all) then use the
space bar to move to the next or ENTER to
complete the line.

It you want to type a line containing a label,
then it is #xactly the same, Start in the
LABEL field (tha tefunost unel, type your
tabel followed by a space. then carry on
with instruction and operaius fields,

Some typing errors will be recogrised by
CHAMP when vou press ENTER ung will
cause an error message (o be displayed.
Possible errors at 1his point are _ABEL,
INSTRUCTION or OPERAND errors.
Thesa correspond respectively ta the three

fields in the assembler display, so
if you get anerror it is most likely that your
mistake will be in the field referred 1o in the

cerar nessage. Use the cursar keys to go
bach argd currect the mistabe when you've
toumd il

Wien o you've typred the listing in, press
b rTE R one last tune 10 return 1o EDETD
mode, then use the cursar heys 10 check
v the listing 1o ensure that it looks like
the caample, Wihien you are satisfied, press

tESC 1o return to{ASSEMBLED
made and SAVE your text using the S
command tthis can be luaded back at any

time using the L corminana), This is a good -

tiatnt, (1 is friuch egsier o 1ose what you aré
duitig whent vaing machine code since you
can't use CTRL-C or STOP
10 SLuP d FUNaway [Fograre,

Having SAVEJ your lsting, you can now
Assemble it, Type A (far Assembiel, and
CHAMP will display the ASSEMBLE=)

promept. Type in 8 3, this is your assembly
optivn, il tells 1he assembler what sort ot
lisling yOu want and is expleined more fully
alyewhere in the manual. Press ENTER at
this point and assembiy shouild commence,

It all is well, CHAMP will have printed &
verston of your listing with soMme extra
nusnbers on the felt hana side, The felt
triust coluinin ot nuinbers shiow the addresses
to wnich each instruction has been assem-
hieg They may iock a fittle odd because
they are expressed in bexatuuimasl nutation.
1 oyour are not sure of this, then refer o
your £80 baok far a full explanation before
proceeding.

Notice that the aduiresses o not increase
atter corminent Hnes, this is of course because
they ta not produce any machine code.

This is also retlected in the second two
columns of nurnbers, these cantain the
actual machine code values loaded into
memory. You can see that comment lines
once again produce no machine code values,
as you would expect.

Atter the listing you will aiso see a table of
atl the the lables you used, this is cailer] the
Symbol Table and CHAMP produces it for
youf convienience when using it 1o produce
targe amounts of machine code. It enables
you to find the parts of the program you
want quickly,

You might tike 1o note that addresses of
variables and jump labels are held in the
symbol table inthe same way, this is because
the microptacessor holds them internally in
asinilar way in its registers,

Having successfully assernbied your example
prroyrarm, enter the imonior part of CHAMP
by pressing M then ENTER. The_screen
should now display the { DEBUG)
frromngt.

flow we want 1o look 3t the program you

assermnbiled into mermory. The start address

of your prograra is nat $CHAS, bLur $CPP2,

bLecause m vi¢ two varidbles you reserved.

S0 Lygaes {tor dissassernble}) followed by

?u (vou don't wnewd a $ osign in
(918 HU(. thode),

Cd¢2 3tba LD A §64
Cé4 32¢4C¢ LD ($cpfdi A
C{o7 3EFF LD AJFF
cédo 3281Cd LD (§cdpi A
ClC 3AICY LD A I$CHN
C$F 3D DEC A

c1d 297 JR NZ, $Cpda
c12 ﬁAch LD A, ($COMH
C§15 30 DEC A

chis 236 R NZ.$Chpa
c§18 v RET

FIGURE 2

When you press ENTER, you will see a list-
ing similar to Figure 2, without comments
and Pseudo-ops. You will retnember that
these produce no machine code

tf this listing doesa’t look like the machine
code you typed in to the os,embler then
return to € ASSEMBLE / mode by
wyping A,ENTER and REASIEMBLE the
programy, checking that you ute the correct
option and that the assernbier finishes by
sayling that it found no errors.

And now for the moment of truth, if the
tisting printed. by the dissassemoale command
looks carrect, you can execute it hy typing
GCPfB2 ENTER. 1f ait iswell, 1ne CDEBUG
} prormpt will return almost immediately,
telling you that your program has completed
execution,

You might like to type in the BASIC pro-
gram-in order 10 appreciate the magnitude
of difference in speed betweer 1he two pro-
grams. You could even modify the programs
10 put an extra loop around the outside of
the two loops already present and use a
stop-watch to calculate exact) - how much
taster machine code isby using the formula: -

BASIC TIME (SECONDS)

MACHINE CODE TIME iSECONDS)
Be prepared to wait a long zime for the
BASICt

When entering a new prograrm, emember,
LABELS must start with a (et er, and must
not be more than six alphanuneric charac-
ters long.

INSTRUCTION MNEMONICS must be
standasrd ZBQ: two, three, or four letters

fong.

OPERANDS must follow standard ZB80
formats. They can contain zrithmetic ex-
pressions comprising symbols or hex con.
stants and a '+° or "—' operator, and can fill,

but not excecd, the entire operand tield.
COMMENTS must start on 2 new line with
Thuy can fill, but not exceed, 11 entire
ling, and are not subject 1o syntax or format
checking.
When you have successfully typed in the
program, enter € EDIT> mode. In this
mode you can change the 1ext on the Edit
Line, and you can move the entire text file
up and down on the screen using the fallow-
ing kKeys:

KEY EFFECT
f Moves the Edit Line up
one line.
4 Moves the Edit Line down ~
one fing.

{CTRLU)HT) Moves 10 the 10p of the 1ex1

{CTRLI+{B) Moves 10 1he bottom of
the text,

{CTRLI+ (U} Moves 1ext up one screen

. page:

(CTRL)+iD} Moves text down one
screen page.

(CTRLI+(Z) Deletes 1he contents of the
Edit Line,

These keys without (CTRL) have the same
effects in € ASSEMBLE > mode, but
you cannot delete or atherwise modify your
1ext in that mode.

It the results are successful, then you might
want to SAVE the machine code {called the
Otiject Code 10 distinguish it from the
Assembly language Source Coddel to tape,
using the "W’ command in { DEBUG D> .
Hoving done that, you might like 1o ury
altering some of the object caxle in memory
using the '@’ conunand, also in € DEBUG

Once you've started 10 understand
roughly what’s going on in Champ, you
should” simply play around with any and
every command or option that imeets your
eye— you can't damage anything, and it's
really the only way to learn,

{ EDIT» MODE COMMANDS

in ¢ EDIT > mode, source text Is displayed
with the cursor on the Edit Line, and{EDIT
2 on the Command Line, Text an the Edit
Line can be overwritten or defeted {using
[DEL} or [SP). {RET) causes the Edit Line
contents to be checked for syntax and
format, An error message will appeasr If the
line is faulty, and the text will remain on
the Edit Line, 1f the line is acceptable, it
will be entered into the source text, and
mode will change from € EDIT> 1o €

INSERT > . (RET) toygles these two
modes, while (ESC} toguies € EDIT) and
< ASSEMBLE 2 modaes,

The tollowing keys can be used 16 move the
source [ex1 on the screen, assurnlng the text
on the Edit Line is correct. If a8 lina is

edited & text is valid, then any of the followlng
xeys nas the effect of entering the new line
into the source text without changlng the
made,

N.B. The tuxt movernunt keys aave the
same eflects when used in ¢ ASSEMBLE
mode, but they then do not reqguire ([CTRL)
1o be pressed. Thus (U) in € ASSEMBLEY
mode moves the sCreen text up one page,

KEY ? EFFECT

Moves one fine up the tex?.

& Moves one line down the
text,
(CTRULIH(U) Moves the sereen text up
one page.

(CTRILHD) Moves the screen fext
down one page,

(CTRLI+(T) Moves 10 the top of source
text,

(CTRL+{B) Moves to the bottom of
source 1eat.

{CTRLI+(2) Delutes the Edit Line

contents,
{ESC} Enters (ASEMBLE) |
moxde, !
(RET} Enters < INSERTY>

{INSERT) MODE COMMANDS

It is this mode that you actually type your
Assembly languaje program inte the
Assembler, The Command Line shows
CINSERT)> | and a Mlashing cursor ap-
prears on-the Edit Lina. The Edit Line {and
the whole screen} is divided into three
coloured columns, corresponding 1o the
Label instruction, and Operand Fields of an
Assurnbly language program,

Label Field

A label is any alphanumeric string of up 1o
six characters, There must be a letter in the
first position of the Field. A label does not
require a colon {or any other character) as
delimiter. -

Instruction Field

Instructions are Assemnbly language mne-
monics a» in Zilog Z80 specitications. They
fnay he two, three or four ietters long, start-
iy irv the hirst position of the Field,

Operand Fieid

Operands may be hex constants {which
tust be preceded by 3). iabels, symbaols, or
€xressions comprising two operands seper-
ated by + or —. Decimal, octal, and binary
constants are not permifted, Operand
torimats tor the various addressing modes are
as spreciticd by Zilog.

Text entry in € INSERT > is subject 10
Fi:lkt Forrnating. This means it is impossible
far you to type a seven-character label, or a
five chigracter instruction. Typing an extra
charscter, of hitting {SPACE), causes the
cursor o skip to the first position of the
neat field.

The (CHSRR}, [CRSRL). and (DEL) keys
act as normal in € INSERT » mode -
subiject 1o Ficld Formating —~ but the delete
keys acts on the cursor character rather than
on the character to the left of the cursor.

wWhen you hit IRET) in € INSERT)
inGue, the contents of the Edit Line are
cneched for syntax and format; if an error
is tound, then a message appears on the
Lrrcr Line. It no error as found, then the
contents of the £dit Line enter the source
tent, and the Edit Line is cleored for the
vntry of a new line, titting (RCT)when the
Cetit Line is blank togyles between ¢ EDIT)
matte andd € INSERT 2> e,

{ DEBUG) rIODE COMMANDS
I his imode combines the tollowing tunctions:
RMELIOHY MONMITOR - allows you ©
st and aiter the contents of memory.

HLX DISSASSEMBLER —~ allows you to
interpret the Contents Gl rornosy as machine
code o be canverted back in10 Assuinbly
larnguiage)

DERBUGGER: allows you 1o execute
machine code programs in an error-trapping
environment.

< DEBUG> is a command maode, but the
Command Line/EditLine/Field Format
dispilay of the other modaes is not used: the
screen is a8 biank page showing only the
prompt and a cursor, In this mode all con-
stants without the §' orstix, although the
‘H* command supports dacimal constants,

ABBREVIATIONS

addr . any hex :ddress

saddr start adcress of a block of
memaory.

faddr finish aadress of ablock of

memory (=1* address ot
last by te nr block},

daddr destinaticn address in hex,
hx a hex value {hx € = FF}
" regname CPU revister name (see
below).
expr - any arith wetic expression

in one or two operands;

operands may be decimal

constants, ‘3’ — prefixed

hex constants, or legal

symbois, operators are "+°

of =",)
bystr a string 7 hex byte values

. seperated by spaces.

chstr a string o' characters
{exactly as it appears, no
seperators).

CPU REGISTER NAME
ABBREVIATIONS

A= Accumulator; F = Flag/Status Register:
HLBCDE, = - Registers; SP = Stack
Pointer I X, 1Y = IX, Y registers.

COMMARND EFFECT

@ addr or 0 addr Memory irom the yiven
address o:.~ards displayed
one byte 1t a time. in hex
and ASCI! equivatent. Hit
{RET} 10 advance to next
byte, hit 'ESC} 1o return
to command level, or type
a hex corsiant to replace
the existiny content of the
byte,

A Return to f ASSEMBLE>
made. ‘

D addr f audr Memory 1rom the gives
address onwards is dis-
played in screen pagus; hit
any key o continue, or
{ESC) 1o return 10 com-
mand level,

F saddr faddrhx Every byte between saddr

and faddr i; filled with hx.

K

M daddr

sacddr faddr

Q addr

G addr
C addr

Bn=addr

R regname

J addr

H expr

S bystr

Nchstr
w

Print source and symbal
table usiye

The block of memory bet-
ween saddr and tfaddr is
copied w the block start
ing daddr.

Memory trom addr onwards
is disassembled; hit {BET)
to contiue, and (ESC) to
return 10 commmand tevel,

The code starting at addr is
executed {returnablel,

Execute from addr {non-
returnable).

A breakpoint number n,
(betwean 1 and 8) is set at
addr, to cause a break in
execution of any program
which accesses the contents
of addr as an instruction;
press {C} (BET) to continue
from breakpoint,

Eliminates breakpoint n.
Displays the addresses of

“all the breakpoints,

Displays the contents of a
CPU register and accepts a
new value {similar 10 the
function of ‘@ above),

Executes the code from
addr onwards, one ins ruc-
tion at 2 time, giving a tult
register display. Hit {J} 10
continue, {(ESC) 10 return
to0 the command level,

Displays the decimat, hex,
and binary value of expr.

Searches the memory trom
$48@¢ onwards for every
occurrence of bystr. The
word ‘searching’ is dis-
played while the program
is searching. and the address
displayed when bystr is
found. Hit (RET) to con-
tinue the search, or {ESC)
10 return 1o cormnmand level

A3 'S' above,

lLoad, Save, and Verify
machine code to tape, see
BASIC panwi.

-INSTRUCTION FORMAT

Instruction

LD
LO
LD
Lo
LD
CCF

AB.
AdorF

(iEDQS)‘A

A (HL)

A l1¥+d)

Z80

Addressing Mode

Register (Direct)
lLinmedtiate
Apsolute {Direct)
Register {{ndirect)
Inddexed (indirect)
lenotied

ASSEMBLY LANGUAGE

FORMATS -

Psuedo-

Op-

Codes Meaning

ORG origin; assemble

addr . mmachine codd in memory

L’ trom addr onwards. The
program line with ORG on
it cannot take 4 iabel.

EQU wquadte; set the symbol in
the Label Field equai 10
the constant. symboi or
expression in the Operand
Field.

[]2] detine bytels}); load

const/ this jocation, and as

chstr many tollowing as ruquired
with the valuels, of const
or chrste

Dw deline word; oad this

const/ location with the lo-

symb byte, and the next location
with the hibyte of the
operand

BN deline storage: aid the

const/ value of the operand to

symb the jocation address of this
instruction,

Abbreviations;

addr a ;-prefixed hex address

const a §-prefixed hex
constant; as an cperand of
DB, const must be a single-
byle wvalue. A string of
constants such as (DB
const{SP} const {SI°} const

. ete) is valid,

chstr a string of characters en-
closud in single quotes {e.q.
‘AB3%9KI0")

symb any valid symbolic opurand

LINKING MACHINE CODE AND
BASIC

Once you're famitiar with both Champ and
Assembly language programming, you'll
probably want 10 be able to call special
purpose machine.code routines irom BASIC
programs, father than write entire programs
in imachine code. The easiest way of doing
this is:

1. Using Champ, develop the Assembly
language routine util it warks,

2. From ASSEMBLE mode, SAVE
the Assembly language routine 10 tape for

future reference, :
EH

K} Assemble the routine into memory,
choosing an ORG address near tne top of
User RAM (see your computer User Manual
for Memory Map and advica).

4. From OEBUG mode, SAVE the
block of meinory containing your machine
code 10 tape.

5 Quia Champ

) Write your BASIC program, starting
with the jnstruetions necesssly 10 set! the
Top ol User HAM pointers to an address
salely below me ORG address of your
routiie Foltow thase instructions in the
program with a LOAD instruction that will
load your machine code routine from tape
10 the lpcation from which it was SAVEd
{consull your User Manual).

7. Whenever you need 1o execute the
machine-code routine in the BASIC program
use g USH nstroction with your routine's
address. .

8 Save the BASIC program as usua),

CHAMNP ERROR MESSAGES

Error messages appear on the Error Line in
all modes exCeit DEBUG , which
prints 'ERBOR’ a1l the current cursor
position :

Message Meaning

Label Error A syntax or tormat error in

the Label Ficld,

instruction A syniax or-formar error

Error in the instruction Field.

Operand A syntax or formal error in

Errar - ihe Operand Field,

Unoefined The Label or Symbol dis-

L bt played on the Edit Line
has not been assigned an
address or a value.

Jumis out of The felative jump in the-

Hanye . instruction on the Eagit
Line requires a displace-
ment of more than 127
bytes orward or 128 byles
backward.

Overtiow Assembling the instruction

on the Edit Line into mem-
ory would averwrite
CHAMP itself, or some
prolected meinory, or
wouid be oyt of range.

Error The operand of a DEBUG
. command contains
itlegal symbols or is w00
targe a quantity, or is a8 bad
address ete.

ASSEMBLE _ MODE
COMMANDS

Find = string (RET)

Searches the Assembly language program
from the start of the program far the first
occureunce ol the given string,

Next = string [RET)

Searches the Assembly language program for
the next occurrence of the given string. The
search begins from 1he end of the program

line currently on the Edit i.ine.

Find = {HET} and

Next = (RET!)

As above, butl his searcres for the string
defineg in last ‘F* or ‘N° c smmand. While a
search is preceeding, the message ‘searching’
appears on the Error Line {f the search is
successiul, the line contining the string
being seached for appears on the Edit Line,
If the search is unsuccessf |, the last line of
the program appears on the Edit Line,

Load =) Save=) Verify =>

These must all e foliowed by a filename;
double quotes are not needed, but the file-
name must be legal tar user's machine.

Print = » expression (RET}

This prints the hex value of the given ex-
pression on the Error Line, 2g.

Print= > $FB-$CY $37

symbols aiready defined in source text can
be wused in expressions; Sut only one
Operator (+ or=) is allowed per expression.
Quit = > Y}

This quits Champ and returas control 10 the
BASIC systern only if (¢} follows 1he
prompt; any other response aborts the
command.

{M) .

Enter DEBUG moce. Return from
there 10 ASSEMBLE mode by press-
ing [A) {RET).

{ESC)

Toggle EDIT eand ASSEMSBLE
modes.

Assemble =) {option number} (RET).
This assembles the source wext in one of a
variety of ways, dependi... upon which
numerical option is chosen,

KEY PROMPT FUNCTION
{F) Find = » ¥ind a string
{N) Next = > Find a string
{L) * Load =Y lLoad a source
{le.
w) Save. =) Save a source
fle
(V) Verify =3 v .:rify 3 source
. tile
{P) Print =) Frint value of
) expression
Q) Quit=> Cuit to BASIC
{M} Enter
DEBUG
mrode
{ESC) Enter EDIT
“mode
{A) Assembles) Azsemble
: Dengram,

]

ASSEMBLY OPTIONS

To tell the assambler what 10 do, you
must choose from the 1able below, add the
numbers together and type the resulting
number in reply 1o the Assemble = prompt.

Option No.
Syntax check only 0
Display full list on screen +1
Load M{Code into memory +2
Copy screen 10 printer +4
Doubie line list +10
Supress display of symbol tabie +4Q
EG.~ To assemble machine code inic

memory, with a double line isting to the

printer you type 17 (RET),
Fuil tist 1
M/C 1o memory 2
Screen 1o printer 4
Double line list 10
17

ite These are hexadecimal numbers, so bear

this in mind when adding up.
Assemble =) 2 (RET)

causes the source iext to be asseinbled with
errorchecking and the resulting machine
code 10 be loaded into mernocy as directed
by the ORG pseudo-op-code, The symbol
table is displayed on the streen, but no
assemnbiy listing appears on the screen, and

there is no outpul 1o the printer,

if an error is found during assembly, a
message will appear on the Error Line,
assernbly will cease, and the screen will dis-
play the source text with the faulty instruc-

tion appearing on the Edit Lina,

Biblography,
Book Author
" Programming the Z-80 Zaks

Z-80 Assembly Language Leventhal
Programming

USEFUL ADDRESSES

Source stored at. $ AAped
Symbols stored at: $ Epug
Best ORG Address. $. Cop¢

»

CHAMP

Continuation
Sheet

Publisher

aymanpmmany

SYBEX

Osbourne/ MCGraw Hitl

To re-enter CHAMP typei- DEF USR & H8 40 [For Normal En!ry)

DEF USR & HB4D3 (To clear source buﬂer)

To Execute CHAMP Type -

‘PRINT USR (@)

